Categories
Albert BERT clustering data science DistilBert document clustering Huggingface LDA Machine learning NLP python topic modelling transformers

Topic modeling using Roberta and transformers

See how to do topic modeling using Roberta and transformers. We will use a pre-trained Roberta model finetuned on the NLI dataset for getting embeddings and then do topic modelling.

See how to do topic modeling using Roberta and transformers. We will use a pre-trained Roberta model finetuned on the NLI dataset.

What is topic modeling?

According to Wikipedia, In machine learning and natural language processing, a topic model is a type of statistical model for discovering the abstract “topics” that occur in a collection of documents. Topic modeling is a frequently used text-mining tool for the discovery of hidden semantic structures in a text body.
– It an unsupervised technique to know which “topic” a text document belongs to.

What is BERT?

Bidirectional Encoder Representations from Transformers is a technique for natural language processing pre-training developed by Google.

What is Roberta?

RoBERTa builds on BERT’s language masking strategy, wherein the system learns to predict intentionally hidden sections of text within otherwise unannotated language examples.
RoBERTa, which was implemented in PyTorch, modifies key hyperparameters in BERT, including removing BERT’s next-sentence pretraining objective, and training with much larger mini-batches and learning rates.
This allows RoBERTa to improve on the masked language modeling objective compared with BERT and leads to better downstream task performance.

Why use BERT/Roberta?

Transformer-based models such as BERT or Roberta have shown SOTA performance in various NLP tasks over the last few years. 
Pre-trained models are trained on a huge corpus of text from the web. These models contain more accurate representations of words and sentences.

What are embeddings?

Words or phrases of a document are mapped to vectors of real numbers called embeddings.

How to get embeddings using BERT?

There are many ways to embeddings of text using BERT/Roberta.
We will use sentence-transformers here to get embeddings.
There are many pre-trained models finetuned on the NLI dataset.

Now let’s jump into topic modeling using Roberta and transformers using Bertopic.

I strongly recommend using Google colab with GPU enabled for this.

1. Install Bertopic,
!pip install bertopic
2. Prepare data for topic modelling,

We will use 20newsgroups dataset available in sklearn datasets.

But, we will filter to keep only 5 different types. There are ‘alt.atheism’, ‘rec.motorcycles’, ‘rec.sport.baseball’, ‘talk.politics.mideast’, ‘sci.space’.

Import Bertopic and filter 20newsgroup datasets,

from bertopic import BERTopic
from sklearn.datasets import fetch_20newsgroups

# Focus on 5 differenty news categories.
cats = ['alt.atheism', 'rec.motorcycles', 'rec.sport.baseball', 'talk.politics.mideast', 'sci.space']
docs = fetch_20newsgroups(subset='train', categories=cats)["data"]

docs is a list of news content without any labels.

3. Create topics using BERTopic

We will use roberta-base-nli-stsb-mean-tokens model for getting embeddings of news text.

But you can use any model listed here.

model = BERTopic("roberta-base-nli-stsb-mean-tokens", 
                 top_n_words = 20,
                 nr_topics = 5,
                 n_gram_range = (1, 2),
                 min_topic_size = 30,
                 n_neighbors = 15,
                 n_components = 5,
                 verbose=True)

The parameters used as below,

top_n_words : int, default 20 The number of words per topic to extract.

nr_topics: int, default None Specifying the number of topics will reduce the initial number of topics to the value specified. This reduction can take a while as each reduction in topics (-1) activates a c-TF-IDF calculation. IF this is set to None, no reduction is applied.

I want to create 5 topics here.

n_gram_range : Tuple[int (low), int (high)], default (1, 1) The n-gram range for the CountVectorizer. Advised to keep high values between 1 and 3. More would likely lead to memory issues.

min_topic_size : int, optional (default=30) The minimum size of the topic. n_neighbors: int, default 15 The size of local neighborhood (in terms of number of neighboring sample points) used for manifold approximation (UMAP).

n_components: int, default 5 The dimension of the space to embed into when reducing dimensionality with UMAP.

verbose: bool, optional (default=False) Changes the verbosity of the model, Set to True if you want to track the stages of the model.

4. Fit the model.

Fit the models on a collection of documents and generate topics.

topics = model.fit(docs)

Here is the logs,

100%|██████████| 461M/461M [00:48<00:00, 9.53MB/s]
2020-10-10 06:09:08,066 - BERTopic - Loaded BERT model
INFO:BERTopic:Loaded BERT model
2020-10-10 06:09:39,537 - BERTopic - Transformed documents to Embeddings
INFO:BERTopic:Transformed documents to Embeddings
2020-10-10 06:09:58,499 - BERTopic - Reduced dimensionality with UMAP
INFO:BERTopic:Reduced dimensionality with UMAP
2020-10-10 06:09:58,626 - BERTopic - Clustered UMAP embeddings with HDBSCAN
INFO:BERTopic:Clustered UMAP embeddings with HDBSCAN
2020-10-10 06:10:05,005 - BERTopic - Constructed topics with c-TF-IDF
INFO:BERTopic:Constructed topics with c-TF-IDF
2020-10-10 06:10:08,244 - BERTopic - Constructed topics with c-TF-IDF
INFO:BERTopic:Constructed topics with c-TF-IDF
2020-10-10 06:10:11,466 - BERTopic - Constructed topics with c-TF-IDF
INFO:BERTopic:Constructed topics with c-TF-IDF
2020-10-10 06:10:14,716 - BERTopic - Constructed topics with c-TF-IDF
INFO:BERTopic:Constructed topics with c-TF-IDF
2020-10-10 06:10:17,846 - BERTopic - Constructed topics with c-TF-IDF
INFO:BERTopic:Constructed topics with c-TF-IDF
2020-10-10 06:10:17,867 - BERTopic - Reduced number of topics from 10 to 5
INFO:BERTopic:Reduced number of topics from 10 to 5

Here you can see number of topics initially determined to be 10 by model but it reduced to 5.

5. Transform the docs.
topics = model.transform(docs)

logs,

2020-10-10 06:10:41,618 - BERTopic - Loaded BERT model
INFO:BERTopic:Loaded BERT model
2020-10-10 06:10:59,712 - BERTopic - Transformed documents to Embeddings
INFO:BERTopic:Transformed documents to Embeddings
6. Get all topics, their top keywords, and topic id:-
model.get_topics()

Here is the topics,

{-1: [('armenian', 0.0017693323038049094),
  ('armenians', 0.0016565243206481473),
  ('turkish', 0.0015366849193318036),
  ('armenia', 0.0013903376480366681),
  ('said', 0.0013758937730116987),
  ('dod', 0.0012992454495922676),
  ('bike', 0.0012928605305784712),
  ('turks', 0.0012654484389126623),
  ('good', 0.0012586538141642354),
  ('didn', 0.0012238552412850187),
  ('did', 0.001186921328459221),
  ('know', 0.001176709003317458),
  ('cs', 0.0011692494395163801),
  ('say', 0.0011601316008558332),
  ('year', 0.0011523408652942147),
  ('ll', 0.0011448219890220434),
  ('world', 0.001133375447962003),
  ('going', 0.0011219456607587204),
  ('turkey', 0.0011034297859071024),
  ('right', 0.0010911655655473488)],
 0: [('israel', 0.00821818919224951),
  ('israeli', 0.0075735962617810085),
  ('jews', 0.006075444179935547),
  ('arab', 0.004627930619646598),
  ('lebanese', 0.004383798402286841),
  ('lebanon', 0.0037706635420496856),
  ('israelis', 0.003671999676758539),
  ('cpr', 0.003480032235447003),
  ('arabs', 0.0034668497365718727),
  ('gaza', 0.003463835049483846),
  ('policy', 0.0034403288206129555),
  ('center policy', 0.0032162089430165645),
  ('policy research', 0.0032012302167785333),
  ('palestinian', 0.0031678439613086373),
  ('adam', 0.003163791825319031),
  ('palestinians', 0.0030192484441283825),
  ('jewish', 0.003017380023930699),
  ('attacks', 0.002961080059985608),
  ('igc', 0.0029226581263436984),
  ('hernlem', 0.002865323302670359)],
 2: [('space', 0.004324200107322805),
  ('nasa', 0.003785952195071457),
  ('launch', 0.0035810202515314214),
  ('moon', 0.00351051658277184),
  ('orbit', 0.003391991793946083),
  ('lunar', 0.003102520947323984),
  ('gov', 0.003101427878189496),
  ('henry', 0.0030503220419388264),
  ('nasa gov', 0.0030072145921081024),
  ('satellite', 0.0028870175175573116),
  ('shuttle', 0.002851150001265263),
  ('earth', 0.0026528308553142323),
  ('jpl', 0.0025857704207529445),
  ('mission', 0.0025587430491707283),
  ('alaska', 0.002461952233665219),
  ('toronto', 0.0023141616598706546),
  ('mars', 0.002299537511379093),
  ('solar', 0.002273568144876374),
  ('access', 0.0022109157650099546),
  ('alaska edu', 0.002114090937880779)],
 5: [('keith', 0.004109975332301287),
  ('god', 0.003163473905413346),
  ('caltech edu', 0.003102519164290355),
  ('caltech', 0.003052947568354468),
  ('edu keith', 0.002867329828850716),
  ('livesey', 0.0026760301095891527),
  ('sgi', 0.0026326257465370075),
  ('atheists', 0.00251283994781542),
  ('moral', 0.002354739579824985),
  ('islam', 0.002354091101939691),
  ('atheism', 0.0023399129214929193),
  ('morality', 0.0022973020821965497),
  ('sgi com', 0.002251649986266537),
  ('wpd', 0.0021668911467585413),
  ('wpd sgi', 0.0021668911467585413),
  ('solntze wpd', 0.0021572724320563946),
  ('solntze', 0.0021572724320563946),
  ('schneider', 0.0021353863002852784),
  ('evidence', 0.002097834227036188),
  ('argument', 0.00206386069211151)],
 8: [('00', 0.010653711435821906),
  ('02', 0.00892045316032216),
  ('03', 0.008794185757250314),
  ('01', 0.007427940411598331),
  ('00 00', 0.006493248229890668),
  ('04', 0.006221657086294662),
  ('333', 0.0053242759123529135),
  ('games', 0.004815768529654299),
  ('lost', 0.004497531155338454),
  ('won', 0.0043492236370303375),
  ('05', 0.0043295706540779945),
  ('baseball', 0.004260337219654381),
  ('philadelphia', 0.00422342904723393),
  ('game', 0.0040184757010950515),
  ('league', 0.0038619264872576885),
  ('500', 0.00375257613216997),
  ('runs', 0.0035607986294674643),
  ('sox', 0.003533651848201407),
  ('win', 0.0033356958104620677),
  ('hit', 0.0032188072687711474)]}
7. Get a particular topic and max n keywords.
# Get a topic 
model.get_topic(2)[:10]
[('space', 0.004324200107322805),
 ('nasa', 0.003785952195071457),
 ('launch', 0.0035810202515314214),
 ('moon', 0.00351051658277184),
 ('orbit', 0.003391991793946083),
 ('lunar', 0.003102520947323984),
 ('gov', 0.003101427878189496),
 ('henry', 0.0030503220419388264),
 ('nasa gov', 0.0030072145921081024),
 ('satellite', 0.0028870175175573116)]
8. Get all topics frequency:-
model.get_topics_freq()
TopicCount
-11512
5494
2434
0271
8121
Topic frequency table.
9. Model serialization:- See how to save and load for topic prediction.
# Save model
model.save("my_model")	
# Load model
my_model = BERTopic.load("my_model")

Check if the loaded model working fine,

We will get topic id 2 which is about space

my_model.get_topic(2)[:10]

output,

[('space', 0.004324200107322805),
 ('nasa', 0.003785952195071457),
 ('launch', 0.0035810202515314214),
 ('moon', 0.00351051658277184),
 ('orbit', 0.003391991793946083),
 ('lunar', 0.003102520947323984),
 ('gov', 0.003101427878189496),
 ('henry', 0.0030503220419388264),
 ('nasa gov', 0.0030072145921081024),
 ('satellite', 0.0028870175175573116)]

It is working fine.

10. Let’s predict the topic for a news text,

my_model.transform("NASA Finds Billion-year-old Sand Dunes On Mars That Reveal Climate Pattern Of The Planet")

It predicts [2], which is the topic id for space news. Alos, it is correct topic.

2020-10-10 06:19:20,754 - BERTopic - Loaded BERT model
INFO:BERTopic:Loaded BERT model
2020-10-10 06:19:20,941 - BERTopic - Transformed documents to Embeddings
INFO:BERTopic:Transformed documents to Embeddings
[2]

If you are facing any issues let me know in comment section.

My other articles about Huggingface/transformers/BERT,

Conversational response generation using DialoGPT

Faster transformer NLP pipeline using ONNX

Text2TextGeneration pipeline by Huggingface transformers

Question answering using transformers and BERT

How to cluster text documents using BERT

How to do semantic document similarity using BERT

Zero-shot classification using Huggingface transformers

Summarize text document using transformers and BERT

Follow me on Twitter, Instagram, Pinterest, and Tumblr for new post notification.

Leave a Reply

Your email address will not be published. Required fields are marked *

How to do semantic document similarity using BERT Zero-shot classification using Huggingface transformers